If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+4z-9=0
a = 1; b = 4; c = -9;
Δ = b2-4ac
Δ = 42-4·1·(-9)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{13}}{2*1}=\frac{-4-2\sqrt{13}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{13}}{2*1}=\frac{-4+2\sqrt{13}}{2} $
| 18j=19j-18 | | 5/2-x(x+1)=x(2-x) | | 10v+19=18v-13 | | x/7=3x+6/4-6 | | x+61x+5180=180 | | 18+10d=-5-15+12d | | 3a+4=2-3.5(a+2) | | -1-d=-2d-10 | | x+34x+64=180 | | 4m+-6=6 | | -1-10f=-1-9f | | 9w–8w=2 | | 10h-9=9h | | 3+5w=-1-2+6w | | |4(x-2)|+9=25 | | 7x-6+4x-8=12+6x-3 | | 4+x=4.8+0.6x | | 0.05^x=10 | | 4(2x+1)=5x=3x+9 | | 4(2x+1)=5x=3x=9 | | -2.6b+4=0.9-17 | | 6=9x+24 | | x=2=x | | 5(1-x)^2-6(x-3x-7)=x(x-3)-2x(x+5)-2 | | x=2=3 | | -3r+(r+2)=11 | | 5/3x+1/3x=8(2/3)+7/3x | | 2(x+4)-(x-6)-2(1/2x+7)=0 | | 5/3x+1/3x=8,2/3+7/3x | | 3(x+7)-7x=-15 | | 3.72x+4X^3=5 | | -30-12x=18 |